Abstract:Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
Abstract:Most existing 3D referring expression segmentation (3DRES) methods rely on dense, high-quality point clouds, while real-world agents such as robots and mobile phones operate with only a few sparse RGB views and strict latency constraints. We introduce Multi-view 3D Referring Expression Segmentation (MV-3DRES), where the model must recover scene structure and segment the referred object directly from sparse multi-view images. Traditional two-stage pipelines, which first reconstruct a point cloud and then perform segmentation, often yield low-quality geometry, produce coarse or degraded target regions, and run slowly. We propose the Multimodal Visual Geometry Grounded Transformer (MVGGT), an efficient end-to-end framework that integrates language information into sparse-view geometric reasoning through a dual-branch design. Training in this setting exposes a critical optimization barrier, termed Foreground Gradient Dilution (FGD), where sparse 3D signals lead to weak supervision. To resolve this, we introduce Per-view No-target Suppression Optimization (PVSO), which provides stronger and more balanced gradients across views, enabling stable and efficient learning. To support consistent evaluation, we build MVRefer, a benchmark that defines standardized settings and metrics for MV-3DRES. Experiments show that MVGGT establishes the first strong baseline and achieves both high accuracy and fast inference, outperforming existing alternatives. Code and models are publicly available at https://mvggt.github.io.
Abstract:Reasoning Segmentation requires models to interpret complex, context-dependent linguistic queries to achieve pixel-level localization. Current dominant approaches rely heavily on Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL). However, SFT suffers from catastrophic forgetting and domain dependency, while RL is often hindered by training instability and rigid reliance on predefined reward functions. Although recent training-free methods circumvent these training burdens, they are fundamentally limited by a static inference paradigm. These methods typically rely on a single-pass "generate-then-segment" chain, which suffers from insufficient reasoning depth and lacks the capability to self-correct linguistic hallucinations or spatial misinterpretations. In this paper, we challenge these limitations and propose EVOL-SAM3, a novel zero-shot framework that reformulates reasoning segmentation as an inference-time evolutionary search process. Instead of relying on a fixed prompt, EVOL-SAM3 maintains a population of prompt hypotheses and iteratively refines them through a "Generate-Evaluate-Evolve" loop. We introduce a Visual Arena to assess prompt fitness via reference-free pairwise tournaments, and a Semantic Mutation operator to inject diversity and correct semantic errors. Furthermore, a Heterogeneous Arena module integrates geometric priors with semantic reasoning to ensure robust final selection. Extensive experiments demonstrate that EVOL-SAM3 not only substantially outperforms static baselines but also significantly surpasses fully supervised state-of-the-art methods on the challenging ReasonSeg benchmark in a zero-shot setting. The code is available at https://github.com/AHideoKuzeA/Evol-SAM3.
Abstract:Referring Remote Sensing Image Segmentation (RRSIS) aims to segment instances in remote sensing images according to referring expressions. Unlike Referring Image Segmentation on general images, acquiring high-quality referring expressions in the remote sensing domain is particularly challenging due to the prevalence of small, densely distributed objects and complex backgrounds. This paper introduces a new learning paradigm, Weakly Referring Expression Learning (WREL) for RRSIS, which leverages abundant class names as weakly referring expressions together with a small set of accurate ones to enable efficient training under limited annotation conditions. Furthermore, we provide a theoretical analysis showing that mixed-referring training yields a provable upper bound on the performance gap relative to training with fully annotated referring expressions, thereby establishing the validity of this new setting. We also propose LRB-WREL, which integrates a Learnable Reference Bank (LRB) to refine weakly referring expressions through sample-specific prompt embeddings that enrich coarse class-name inputs. Combined with a teacher-student optimization framework using dynamically scheduled EMA updates, LRB-WREL stabilizes training and enhances cross-modal generalization under noisy weakly referring supervision. Extensive experiments on our newly constructed benchmark with varying weakly referring data ratios validate both the theoretical insights and the practical effectiveness of WREL and LRB-WREL, demonstrating that they can approach or even surpass models trained with fully annotated referring expressions.




Abstract:The difficulty of pixel-level annotation has significantly hindered the development of the Camouflaged Object Detection (COD) field. To save on annotation costs, previous works leverage the semi-supervised COD framework that relies on a small number of labeled data and a large volume of unlabeled data. We argue that there is still significant room for improvement in the effective utilization of unlabeled data. To this end, we introduce a Semi-supervised Camouflaged Object Detection by Utilizing Text and Adaptive Data Selection (SCOUT). It includes an Adaptive Data Augment and Selection (ADAS) module and a Text Fusion Module (TFM). The ADSA module selects valuable data for annotation through an adversarial augment and sampling strategy. The TFM module further leverages the selected valuable data by combining camouflage-related knowledge and text-visual interaction. To adapt to this work, we build a new dataset, namely RefTextCOD. Extensive experiments show that the proposed method surpasses previous semi-supervised methods in the COD field and achieves state-of-the-art performance. Our code will be released at https://github.com/Heartfirey/SCOUT.
Abstract:Despite growing interest in hallucination in Multimodal Large Language Models, existing studies primarily focus on single-image settings, leaving hallucination in multi-image scenarios largely unexplored. To address this gap, we conduct the first systematic study of hallucinations in multi-image MLLMs and propose MIHBench, a benchmark specifically tailored for evaluating object-related hallucinations across multiple images. MIHBench comprises three core tasks: Multi-Image Object Existence Hallucination, Multi-Image Object Count Hallucination, and Object Identity Consistency Hallucination, targeting semantic understanding across object existence, quantity reasoning, and cross-view identity consistency. Through extensive evaluation, we identify key factors associated with the occurrence of multi-image hallucinations, including: a progressive relationship between the number of image inputs and the likelihood of hallucination occurrences; a strong correlation between single-image hallucination tendencies and those observed in multi-image contexts; and the influence of same-object image ratios and the positional placement of negative samples within image sequences on the occurrence of object identity consistency hallucination. To address these challenges, we propose a Dynamic Attention Balancing mechanism that adjusts inter-image attention distributions while preserving the overall visual attention proportion. Experiments across multiple state-of-the-art MLLMs demonstrate that our method effectively reduces hallucination occurrences and enhances semantic integration and reasoning stability in multi-image scenarios.
Abstract:Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.
Abstract:Reconstructing 3D objects from a single image is a long-standing challenge, especially under real-world occlusions. While recent diffusion-based view synthesis models can generate consistent novel views from a single RGB image, they generally assume fully visible inputs and fail when parts of the object are occluded. This leads to inconsistent views and degraded 3D reconstruction quality. To overcome this limitation, we propose an end-to-end framework for occlusion-aware multi-view generation. Our method directly synthesizes six structurally consistent novel views from a single partially occluded image, enabling downstream 3D reconstruction without requiring prior inpainting or manual annotations. We construct a self-supervised training pipeline using the Pix2Gestalt dataset, leveraging occluded-unoccluded image pairs and pseudo-ground-truth views to teach the model structure-aware completion and view consistency. Without modifying the original architecture, we fully fine-tune the view synthesis model to jointly learn completion and multi-view generation. Additionally, we introduce the first benchmark for occlusion-aware reconstruction, encompassing diverse occlusion levels, object categories, and mask patterns. This benchmark provides a standardized protocol for evaluating future methods under partial occlusions. Our code is available at https://github.com/Quyans/DeOcc123.
Abstract:Unsupervised Camoflaged Object Detection (UCOD) has gained attention since it doesn't need to rely on extensive pixel-level labels. Existing UCOD methods typically generate pseudo-labels using fixed strategies and train 1 x1 convolutional layers as a simple decoder, leading to low performance compared to fully-supervised methods. We emphasize two drawbacks in these approaches: 1). The model is prone to fitting incorrect knowledge due to the pseudo-label containing substantial noise. 2). The simple decoder fails to capture and learn the semantic features of camouflaged objects, especially for small-sized objects, due to the low-resolution pseudo-labels and severe confusion between foreground and background pixels. To this end, we propose a UCOD method with a teacher-student framework via Dynamic Pseudo-label Learning called UCOD-DPL, which contains an Adaptive Pseudo-label Module (APM), a Dual-Branch Adversarial (DBA) decoder, and a Look-Twice mechanism. The APM module adaptively combines pseudo-labels generated by fixed strategies and the teacher model to prevent the model from overfitting incorrect knowledge while preserving the ability for self-correction; the DBA decoder takes adversarial learning of different segmentation objectives, guides the model to overcome the foreground-background confusion of camouflaged objects, and the Look-Twice mechanism mimics the human tendency to zoom in on camouflaged objects and performs secondary refinement on small-sized objects. Extensive experiments show that our method demonstrates outstanding performance, even surpassing some existing fully supervised methods. The code is available now.




Abstract:Open vocabulary image segmentation tackles the challenge of recognizing dynamically adjustable, predefined novel categories at inference time by leveraging vision-language alignment. However, existing paradigms typically perform class-agnostic region segmentation followed by category matching, which deviates from the human visual system's process of recognizing objects based on semantic concepts, leading to poor alignment between region segmentation and target concepts. To bridge this gap, we propose a novel Cognition-Inspired Framework for open vocabulary image segmentation that emulates the human visual recognition process: first forming a conceptual understanding of an object, then perceiving its spatial extent. The framework consists of three core components: (1) A Generative Vision-Language Model (G-VLM) that mimics human cognition by generating object concepts to provide semantic guidance for region segmentation. (2) A Concept-Aware Visual Enhancer Module that fuses textual concept features with global visual representations, enabling adaptive visual perception based on target concepts. (3) A Cognition-Inspired Decoder that integrates local instance features with G-VLM-provided semantic cues, allowing selective classification over a subset of relevant categories. Extensive experiments demonstrate that our framework achieves significant improvements, reaching $27.2$ PQ, $17.0$ mAP, and $35.3$ mIoU on A-150. It further attains $56.2$, $28.2$, $15.4$, $59.2$, $18.7$, and $95.8$ mIoU on Cityscapes, Mapillary Vistas, A-847, PC-59, PC-459, and PAS-20, respectively. In addition, our framework supports vocabulary-free segmentation, offering enhanced flexibility in recognizing unseen categories. Code will be public.